王浩拿起了那张4纸,盯着上面复杂图形标准的红线,眼神动也不动一下。
他实在没有想到,丁志强说的竟然是真的那条红线所对应的复平面,竟然真的和黎曼猜想有关系。
丁志强发现的问题,专业性的解释就是一
高次质点函数代入最小质数对节点后,得到的函数所对应的五维代数几何图形(包含虚数解),中心夹层的一个复面,和黎曼猜想具有相关性
这个发现可能是巧合吗?不。
肯定是存在某种必然性。
其中一个重要原因是,黎曼函数是塑造高次质点函数的基础之一。
但问题就在于,高次质点函数的塑造过程并没有用到代数几何方法。
那么,新发现意味着什么呢?
盯着4纸上的红线,王浩皱着眉头思考了好半天,一时间也想不到什么方法,唯一确定的是,新发现肯定很有潜力,具体代表什么就需要仔细研究才知道了。
邱会安也走了过来。
他注意到王浩一直盯着4纸,开口笑道,,王老师,别听丁志强的,他说的就不靠谱。」
「在您回来之前,我已经和他讨论好几次了,这个红线所对应的复平面,和黎曼猜想根本不可能有关系。」
「哦?」
王浩思考着看向了邱会安。
邱会安道,「我一开始还觉得他说的有可能,后来发现这个复平面,根本不可能用一个函数来表示,而是无数个高维图形的交面。」
「比如,有很多不同方向的直线,他们分别两两相交,再把这些点串联连在一起。」
「想要对得到的图形进行方程表示,几乎是不可能的,除非是把所有关联的直线都过一遍旦问题就在于,直线是无限多的」
王浩听罢思考着点头。
从邱会安所说的内容就知道,两人确实仔细的研究过,而且对红线表示的复平面,已经有了基本的认识,知道不可能用单一函数表达。
他开口说了一句,「小邱啊,你不觉得无数个高维图形相交,恰好形成一个复平面,本身就是一件神奇的事情吗?」
「这个」
邱会安犹豫了一下,说道,「确实很奇特,但是,我对代数几何也有了解,像是多个四维、五维复杂图形,相交在一个面,也并不奇怪,这和所对应的函数方程有关。」
「对,你说的有道理。」
王浩点头认可了这句话,随后道,「但志强研究的是高次质点方程,所以我认为,一个全新的想法很有深入研究的必要。」
「即便它确实没有特别的意义,但我们也必须要做出证明,才能得出结论。」
「另外,小邱啊」
「作为你的老师,我认为有必要说说,研究这个东西,灵感是很重要的,甚至比能力还重要,你们都还很年轻,不要被一些固有的想法限制。」
「你觉得某个想法没意义,但万一它就有意义呢?你岂不是就错过了一个很好的发现?」
「额」
邱会安怎么也没想到,说一下自己的想法,竟然遭到了王浩老师一顿说教。
这
他再抬起头就看到,王浩老师和颜悦色的看像丁志强,「志强,我觉得你这个想法非常好,很可能会带来新的研究方向。」
「所以,我决定和你一起研究!」「这很可能是个新发现!」
丁志强好半天都没说话,他心里非常的忐忑,主要是担心王浩不认可他的想法。
这很重要。
如果是其他人,比如说邱会安,认可不认可他根本就不在乎,最多就是和对方辩论一下,再怎么他也不可能被说服。王浩就不一样了。
如果王浩不认可他的想法,丁志强觉得自己都会没有信心,很大可能就直接放弃了。
现在听到王浩不止认可自己的想法,还准备和他一起研究,他顿时就感到非常的兴奋,「王老师,你真的是这么认为的吗?」
「当然了!」
王浩亲密的拍着丁志强的肩膀,「志强啊,你的这个想法太好了,我看了红线所代表的位置,觉得很是不同,里面肯定包含着某种规律。」
「我们就一起研究一下」」
丁志强马上道,「您来看看我做粗略图的过程我是这么想的」
两人认真讨论起来。
邱会安则是带着郁闷回到了自己的位置,再抬头看着热情讨论的王浩和丁志强,心里不由得产生了一种酸涩。
同样是学生
怎么感觉自己被区别对待了?
丁志强用红线标注的位置,确实有些不同寻常,就像是邱会安的说法,红线所对应的复平面,是无数个高维图形的交面,只要是正常做出图形,就必须把红线位置标注出来。
王浩和丁志强讨论的过程中,也对于红线对应的复平面有了了解。
他也思考着关键。
丁志强说「红线对应的复平面,和黎曼猜想具有相关性」,那么相关性是什么呢?
黎曼猜想,也存在复平面。
黎曼猜想中,复平面上r()=1/2的直线称rtl-l(临界线)。
运用这一术语,黎曼猜想的表述为—黎曼ζ函数的所有非平凡零点都位rtl-l上。
即黎曼ζ函数的所有非平凡零点都位于复平面上r()=1/2的直线上(r()表示复数的实数部分)。
虽然能确定两个复平面就某种相关性,但就像丁志强所遇到的问题,他并没有对于最小对节点函数(高次质点函数代入5和17所得到的二元函数方程)进行解析。
没有推导、没有其他分析,想要做出任何的验证都不可能。
如果只是利用思考来做推断,显然不可能得出任何结果。
王浩就干脆让邱会安也加入进来,师徒三人认真的解析起最小对节点函数,同时,他也建立了一个任务一
【任务四。】
【研究项目名称寻找最小对节点函数的交线复平面与黎曼猜想之间的相关性(难度)。】
【灵感值0。】「级难度」「还好。」
当看到研究项目名称的难度时,王浩微微皱起了眉头,他总感觉新找到的研究方向非常重大,还以为会是'+'级别的难度。
级
「或许不一定是难度决定成果,而且找到了某种关键?」王浩仔细思考着。
这是感觉。
虽然过去所做出的重大数学研究,主要依靠的都是系统的反馈和灵感提升,但解决如此多重大数学问题以后,王浩对于数论、函数论等主要方向的理解,也绝对达到了最顶尖程度。
依靠对于数学的理解,他对于自己的感觉也是很有信心的。
在一项全新的研究中,某些时候,感觉是非常重要的。像是丁志强
王浩扫了一眼正投入到思考中的丁志强,不由满意的点了点头,他马上沉下心思,继续投入到对最小对节点函数的解析中。
丁志强之所
以没有对于最小对接点函数进行解析,主要还是因为难度。
这个函数实在太复杂了。
作为一个类似于偏微分方程的函数,想要进行解析、转换,其难度是可想而知的,绝大部分类似函数都是不可能解析的。
如果是通过拆分进行代数几何分析,再联系在一起也非常的困难,他们一起研究了两天,都没有任何的进展。
整个过程中,带来的灵感值也聊聊无几,也只有可怜的1」点。
王浩觉得应该找个代数几何专家,他马上想到了卡切尔—比尔卡尔,就直接打电话过去。
现在的卡切尔—比尔卡尔,已经不是纯粹的学者了,依靠对于超导半拓扑理论的深入研究,他被超导工业材料公司聘为技术部特别顾问。
这个职位带来了很高的收入,准确的说,年薪轻松过千万。