《除以零》作者:特德·蒋(2 / 2)

卡尔摇了摇头。“等一下。显然一和二是不相等的。”

“但在形式上它们是相等的:证明就在你手里。我使用的一切方法都是绝对无可争议的。”

“但这儿不就是矛盾吗?”

“说对了。也就是说,算术作为一种形式系统,是不一致的。”

6b

“你找不出错误来,这就是你的意思吗?”

“不对,你没有听。你以为我是因为这种情况才焦头烂额的吗?证明本身并没有错误。”

“你的意思是说,用的方法都是对的,结果却出了错?”

“正确。”

“你肯定——”他戛然而止,却太晚了。她瞪着他。她当然清楚他想说的是什么。不知她的目光是什么意思。

“你懂吗?”雷内道,“我已经推翻了大半个数学:这门学问全都没意义了。”

她焦躁起来,几乎快发疯了。卡尔小心翼翼地选择着字眼,“你怎么能这么说?数学仍然有作用。科学和经济并不会因为你这个领悟而突然崩溃的。”

“这是因为他们使用的数学纯粹是骗人的把戏。是一种口诀式的小玩意儿,跟用指关节来计算哪些月份有三十一天一样。”

“不一样。”

“为什么不一样?现在,数学与现实绝对毫无关系。且不说像虚数或者无穷小数之类的概念,现在,就连该死的整数加法都跟用指头计算毫无关系。你用指头计算,一加一始终等于二,但在纸上我可以给你无穷多的答案,这些答案全都同样有效,这意味着它们全都同样无效。我可以写出你见过的最优美的定理,但它却不过是一个瞎扯淡等式。”她苦笑起来,“实证主义者曾经说一切数学都是同义反复。他们错了:数学是自相矛盾。”

卡尔试了试另一种方式。“等一下。刚才你提到虚数这类想像出来的概念,大家不也一样接受了吗?现在不也可以这样吗?数学家们曾经相信虚数没有意义,可是现在它们成了数学的基础概念。情况完全是一样的呀。”

“不一样。当时的解决方法只是扩展语境,用在这里不起作用。虚数给数学增添新的内容,而我的形式系统却是给已经存在在那里的东西下定义。”

“但是,如果你改变语境,从不同的角度探索——”

她翻了个白眼。“不可能!这个体系是从和加法一样明白无误的公理得出的结果,无法绕过。我可以担保。”

1936年,格哈德·根茨恩提出了一种对算术一致十性十的证明,可是要做出证明,他需要采用一种有争议的方法,即人们所知道的超限归纳法。这种方法不属于正常的证明方法,因此似乎难以恰当地保证算术的一致十性十。根茨恩所做的是使用可疑的方法来证明显而易见的东西。

7a

卡拉汉从贝克利大学打电话来说他也不能雪中送炭,但表示愿意继续研究她的论文,似乎她触及到了某种本质的、而又令人不安的东西。他想知道她是否打算发表她的形式体系,因为这个形式体系虽然的确包含他们两人都无法发现的错误,但数学界肯定会有人能够发现的。

雷内几乎没有听见他说话,只是嘀咕今后她会打电话联系他的,近来,她与人讲话很困难,尤其是自从那次与卡尔争论以来,情况更糟糕。系里的同事们都尽量避开她。她显得心不在焉,前一天夜里她做了一个噩梦,梦见她发现了一种形式体系,可以使她将主观概念转换成数学语言,然后,她证明了生与死是相同的。

有一种可能十性十让她十分惊恐:她正能正在失去理智。她肯定在失去清晰的思维,这与失去理智已经相差无几了。

她责备自己,你是一个多么可笑的女人。哥德尔证明他的不完全定理后自十杀了吗?

但是,哥德尔的定理是优美的,让人肃然起敬,是雷内所见到的最优美的一个定理。

而她自己的证明却嘲讽她,讥笑她。就好像谜题书中的一道难题,它说:这下我可把你难住了。你跳过这个错误,查看自己在哪儿出了问题,结果绕了一圈又兜回来,那个难题再一次对你说:又把你难住了。

她估计卡拉汉会考虑她的发现对数学的意义。数学的许多内容并没有实际用处,她的理论也可以仅仅作为一种形式而存在,研究它只是为了它包含的智力美。但这是不能持久的。自相矛盾的理论实在太无意义了,绝大多数数学家只会厌恶地置之不理。

使雷内真正感到恼火的是她自己的直觉出卖了她。那个该死的定理大有道理。它以自己怪异的方式,给人一种感觉,它是正确的。她理解它,知道它是真实的,并且相信它。

7b

想到她生日那天的情景,卡尔微笑起来。

“我不相信!你怎么可能知道?”她手里抱着一件十毛十衣,跑下楼来。

去年夏天,他们俩在苏格兰度假。十爱十丁堡一家百货商店有一件十毛十衣吸引住了雷内的眼光,但当时她没有买。于是他订购了这件十毛十衣,放在她的梳妆台十抽十屉里,等那天早晨给她一个惊喜。

“你这个人太容易被人一眼识破了。”他取笑她。夫妻俩都知道这话不是真话,但他还是喜欢这样告诉她。

那是两个月前的事情了。差点两个月。

现在情况不同了,需要改变一下做法。卡尔走进雷内的书房,发现她坐在椅子上,眺望窗外。“猜一猜我为我们俩搞到了什么?”

她抬起头来。“什么?”

“周末预订。在比尔特莫尔订了一套房间。我们可以放松放松,什么都不做——”

“请别说下去了。”雷内说,“卡尔,我明白你的心意。你想我们做点愉快的事情,好让我散散心,不去想这个形式体系。但不起作用。你不知道这个对我究竟是什么样的压力。”

“算了吧。算了吧。”他拉住她的手,想把她从椅子上拉起来,可是她挣开了。卡尔稍站片刻,突然她转过身来,死死盯着他。

“我想吃安眠药,这你知道吗?我几乎希望自己是一个白痴,用不着去思考形式体系。”

他大吃一惊,不知道说什么好。“你至少可以试试离开一段时间,为什么不呢?有益无害呀,说不准会分散你的心思呢。”

“没有什么可以使我分散心思。你不明白。”

“那就解释给我听吧。”

雷内呼出一门气,转身想了一下。“就好像我看见的一切都在向我大喊大叫那个矛盾。”她说,“现在我一直在给不同的数字列等号。”

卡尔陷入了沉默。突然间,他懂了。“这就好像面对量子力学问题的古典物理学家们。仿佛你一直相信的理论给取代了,而新的理论又没有意义,但不知怎么回事,所有证据却都支持这种新理论。”

“不对,压根儿不是那么一回事。”她几乎对他的说法嗤之以鼻,“这与证据没有丝毫关系;这完全是先验的。”

“怎么不同?你的推理和证据之间互相矛盾,这不正是你的问题吗?”

“基督呀,你在开玩笑吗?我测算一和二相等,现在我的直觉也告诉我它们相等。我的脑子里再也无法保持不同数量的概念了,它们对我来说全都是相同的。”

“你不是这个意思吧。”他说,“事实上谁也不可能经历这种事情。”

“你怎么知道我能够经历什么呢?”

“我在尽力去理解。”

“别十操十那份心了。”

卡尔失去了耐心。“那好吧。”说着他走出屋子,取消了预订。

从那之后,夫妻俩彼此寡言少语,只有必要时才说话。三天后,卡尔忘记带他需要用的一盒幻灯片,便驱车回家取,回到家里发现桌子上有一张妻子的留言条。

在接下来的时刻里,卡尔产生了两个直觉。他飞奔穿过房子,边跑边纳闷她是否从化学系搞到了氰化物。就在这时,他产生了第一个直觉:他意识到因为不明白什么原因导致她做出这种事,所以对她没有什么同情之类的感受,没有任何感受。

当他一边猛敲卧室门,一边向屋里的她吼叫的时候,他产生了第二个自觉:感受到一种记忆错觉。这种情形似曾相识,却又逆反得荒谬。他记得自己曾经待在一座建筑物房顶一道锁着的门内,听见一位朋友在外面一边猛力敲门,一边向他吼叫别寻短见。此刻他站在卧室门外,听见她羞愧地瘫倒在地板上哭泣,与他当年待在门里面时的情形毫无二致。

希尔伯特曾经说过:“如果连数学思维都有缺陷,我们还能在哪里找到真理与正确呢?”

8a

雷内暗自纳闷:她自十杀未遂会给自己的一生蒙上十陰十影吗?她的目光对准躺在书桌上的论文的角落。从此以后,人们也许会无意识地把她视为行为反复无常吗?她从来没有问过卡尔他是否也有过这种焦虑感,也许是因为不愿对他提起他当年自十杀的事。那是发生在多年以前的事了,如今,任何见到他的人都会立刻知道他是一个健全的人。

然而,雷内却不能说自己是个健全的人。眼下,她不能理十性十地讨沦数学,而且不敢肯定将来她是否能够恢复理智。现在,如果她的同事见到她,会不会说她丧失了数学才华?

雷内做完案头的工作,离开书房,走进起居室。她的形式体系传遍数学界后,将彻底动摇根深蒂固的数学基础,但是只有少数人会受到她这样的影响。大多数人会像法布里希一样,机械地理解她的证明,被它折服,但仅此而已。会几乎同她一样感受深切的人只是那些能够真正领会其中的矛盾,能够凭直觉感知这种矛盾的人。卡拉汉就是其中的一位。她心想,随着时间的推移,不知他会如何对付这个矛盾。

雷内用手指在铺满茶几的灰尘上画了一条曲线。如果是在以前,她可能会确定曲线的参数,检查曲线的一些特点。而现在这一切似乎都毫无意义了。她的想像力简直崩溃了。

她同许多人一样,以前一直都以为数学并不从宇宙那里获得意义,而是赋予宇宙以意义,物理实体彼此无所谓大或者小,无所谓相同或者不相同,它们纯粹是存在,数学是完全独立的,但它实际上赋予物理语义,提供范畴和关系。它并不描述任何内在的品质,仅仅提供一种可能的阐释。

然而,这一切都不复存在了。数学一旦从物理实体分离出来,就不一致了,而一种形式理论如果不一致,则就毫无意义。算术是经验主义的,仅此而已,引不起她的任何兴趣。

那么,现在她改行干什么呢?她知道曾经有个人放弃学术研究去卖手工皮革制品。她需要一段时间重新找回自我。而这正是卡尔一直努力帮助她做的。

8b

卡尔的朋友中有两个女人,叫做马琳和安娜,她们俩是知心朋友。几年前,马琳曾经想自十杀,她并没有寻求安娜的救助,而是求助于卡尔。有几次,他和马琳坐在一块,通宵达旦,或若促膝谈心,或者默默相视。卡尔知道安娜一直对他和马琳之间的心灵相通有一点儿嫉妒。他究竟又有什么奥妙,能走进马琳的心灵,对此安娜一直感到纳闷。其实答案很简单。这就是同情对方与感应对方心灵之间的差异。

卡尔一生不止一次在类似的情况下给予他人安慰。不用说,他为自己能够帮助他人感到高兴,但还不止这个。他觉得替别人设身处地,把自己当作另一个人,这种感觉很好。

迄今为止,他一直有理由认为富有同情心是他十性十格的底色。他珍视这一点,觉得自己如果不能感应他人就一无是处。可是,现在他却遭遇到他前所未遇的事情,在这件事面前,他平时的本能不起任何作用了。

如果有人在雷内的生日那天告诉他,两个月后他就会有这种感觉,那么他只会一笑置之。当然,这种事情会在几年后发生,卡尔知道时间的力量。可是两个月?

结婚六年后,卡尔对雷内的十爱十淡漠了。他憎恶自己有这个想法,但事实是她变了,现在他既不理解她,也不知道如何设身处地替她着想。由于雷内的十精十神生活和情感生活十交十织在一块,密不可分,因而她的情感生活令他不可捉摸。

随之而起的是自我宽恕的条件反射。他这样想:你不可能要求别人在任何危机中始终如一地支持你。如果一个人的妻子突然患了十精十神病,那么丈夫离开她是一种罪恶,但却是情有可原的。厮守在妻子身边就意味着接受一种不同的关系,这种关系并非适合每一个人,所以卡尔绝不谴责这种处境下的任何人。然而,始终存在一个没有提出来的问题:我怎么办?而他的回答始终是:我要待下去。

伪君子。

最糟糕的是,他曾经也有过同样的遭遇。他曾经沉浸在自己的痛苦里,他曾经折磨过别人的忍耐力,有人始终如一地呵护他。他离开雷内是不可避免的,但那将是一种他永远不可宽恕自己的罪恶。

阿尔伯特·十爱十因斯坦曾经说过:“只要数学定理描述现实,它们就不是确定的;只要它们是确定的,就不描述现实。”

9a=9b

卡尔在厨房里剥豆子准备晚餐这时候,雷内走进来说:“可以和你谈一下吗?”

“没问题。”于是夫妻俩坐在餐桌旁。她故意眺望窗外:这是她即将开始严肃谈话时的十习十惯。他突然对她要说什么害怕起来。在她完全康复之前他并不打算告诉她他要离开,而她康复需要几个月的时间。现在还为时过早。

“我知道我们一直没有明说——”

别,他暗自祈祷,别说出来、请别说。

“——不过,有你守在我身边,我真的十分感激。”

一针见血,卡尔闭上眼睛。谢天谢地,雷内依然望着窗外。情况会变得非常、非常难办。

她仍然在说。“一直萦绕在我脑际的东西——”她停顿了一下,“丝毫不像我所想像的一切。如果那是常见的抑郁,我知道你会理解的,而且我们可以对付。”

卡尔点了点头。

“可是,情况是这样的,我几乎像一个在证明并不存在上帝的神学家。我并不只是存在这种担心,而是知道这是事实。这听起来很荒唐吗?”

“不。”

“这是一种我无法向你表达的情感。这曾经是我深信不疑的东西,但现在它却不是真实的,而且还是我证明出来的。”

他张开嘴想说他完全明白她的意思,他与她有同样的感受。但他没有说出来。因为这种感应将使他们分离,而不是凝聚在一起,所以他不能告诉她。

注释:

①原文如此,作者对这个著名的“证明”推导可能有误。原证明步骤为:a=b→a2=b2→a2-b2=ab-b2→(a+b)(a-b)=b(a-b)→a+b=b→2b=b→2=1。——编者注

②伯纳德·罗素(1872~1970),英国哲学家、数学家、数理学家,获1950诺贝尔文学奖。

③艾尔弗雷德·怀特海(1861~1947),英国哲学家、数学家。

④诺伊曼(1903~1957),美国数学家,对数学逻辑、离子物理以及高速计算机的发展均有贡献。

⑤大卫·希尔伯特(1862~1943),德国数学家,发展了有关不变量的数学。

⑥库特·哥德尔(1906~1978),生于奥地利的美国数学家、逻辑学家。

后记

有一个著名的公式:eπi+1=0。第一次意识到这个公式可以推导出什么来时,我吃惊得合不拢嘴。让我详细解释一下:

我们最推崇的是这样的小说结尾:出乎意料,却又无可避免。当然,我们也知道,所谓无可避免,其实并不真的是无可避免,只是由于作者的才能,我们才觉得这种结局无法避免。

再回头看看上面这个公式。它才是真正的出乎意料。你很可能会无数次摆十弄e、π和i的值,却意识不到其中的机关。在这种情况下,你就会觉得这个公式真的是无可避免的,它只能这样,这时你就会产生一种敬畏,好像你突然发现了一个绝对真理。

今后,也许会有人证明数学其实并不具备人们一直相信它具备的一致十性十,所谓数学的美只是虚幻。在我看来,世间再没有比这种事更煞风景的了。