第189章 攻坚破难(1 / 2)

太阳计划的推进陷入了瓶颈,能量收集与转化效率远不及预期,愁云笼罩着整个科研团队。腾双眼布满血丝,正和团队成员激烈讨论,这时,英匆匆赶来。

腾抬起头,眼中满是疲惫与焦急:“英,你可来了。现在能量收集板的转化效率始终卡在30%,离我们设定的50%目标差太远。”

英看着满桌的资料和数据,神色凝重:“我一路上仔细想了,从生态科学角度,植物光合作用能高效利用光能,我们或许能从其原理找突破。你们目前尝试了哪些方向?”

团队成员马克推了推眼镜,说道:“我们已经优化了收集板的材料结构,尝试了十几种新型复合材料,可效果都不理想。而且,在能量转化的电路设计上,也反复调整,还是不行。”

英沉思片刻,问道:“那在模拟光合作用方面,有没有考虑过模拟其光反应阶段的电子传递过程?通过构建类似的高效电子传递链,也许能提升能量转化。”

腾眼睛一亮:“这个思路很新颖。但光合作用中的电子传递依赖于复杂的生物分子结构,在我们的设备上怎么模拟实现呢?”

英走到白板前,拿起笔边画边说:“我们可以用纳米材料构建类似的结构。比如,利用碳纳米管来模拟生物分子的传导路径,它的导电性和稳定性都很高。”

团队成员莉莉面露疑惑:“英博士,碳纳米管虽然性能好,但在大规模生产和整合到现有设备上,可能会面临成本和技术难题。”

英点点头:“这确实是个问题。不过我们可以先在实验室小规模试验,如果可行,再想办法优化生产工艺降低成本。另外,在能量收集阶段,我们是否可以改变收集板的表面微观结构?”

腾皱眉思考:“改变微观结构?你的意思是像植物叶子表面那样,有特殊的纹理来更好地捕获光能?”

“对!”英肯定地说,“植物叶子表面的微纳结构能减少光反射,增加光吸收。我们可以通过微纳加工技术,在收集板表面制造类似结构。”

团队成员汤姆挠挠头:“可不同波段的光,对微观结构的要求可能不同,我们该怎么平衡?”

英回答:“这就需要精确的光学模拟和实验测试。先确定主要吸收的光波段,针对性设计结构,再逐步优化。腾,你们之前对不同波段光的能量收集效率有详细数据吗?”

腾立刻翻找资料:“有!在可见光的蓝光和红光波段,收集效率相对较高,但近红外波段一直很低。”

英看着数据说:“那我们重点从近红外波段入手。近红外光能量丰富,提高它的收集效率对整体提升很关键。我们可以尝试在收集板表面添加对近红外光敏感的材料。”

马克疑惑道:“添加敏感材料不难,但怎么保证它与其他部分协同工作,不影响整体性能?”

英思索片刻:“可以通过在材料表面修饰特殊的官能团,使其与收集板的基础材料形成化学键合,增强相互作用。这样既能保证稳定性,又能协同工作。”

腾边记录边说:“这个方法值得一试。还有,在能量转化后的存储环节,我们也遇到了一些损耗问题。”

英问道:“是存储设备的漏电,还是转化过程中的能量散失?”